Vivinex™ iSert Toric IOL
Vivinex™ Toric |
Model name | XY1A | |||
Optic design | Biconvex with square, thin and textured optic edge Anterior: Aspheric design Posterior: Toric design |
|||
Optic & haptic materials | Hydrophobic acrylic Vivinex™ with UV- and blue light filter | |||
Haptic design | Textured-rough haptic surface | |||
Diameter (optic/OAL) | 6.00 mm/13.00 mm | |||
Power | +10.00 to +30.00 D (in 0.50 D increments) | |||
Cylinder power1 | IOL plane 1.00 to 6.00 D (T2 to T9) T2 to T3 in 0.50 D increments T3 to T9 in 0.75 D increments |
Corneal plane2 0.69 to 4.17 D (T2 to T9) T2 to T3 in 0.35 D increments T3 to T8 in 0.52 D increments T8 to T9 in 0.53 D increments |
||
Nominal A-constant* | 118.9 | |||
Optimized constants† | Haigis | a0 = -0.8028 | a1 = 0.2133 | a2 = 0.2245 |
Hoffer Q | pACD = 5.697 | |||
Holladay 1 | sf = 1.934 | |||
SRK/T | A = 119.198 | |||
Injector | Vivinex™ iSert® preloaded | |||
Front injector tip outer diameter | 1.70 mm | |||
Recommended incision size | 2.20 mm |
1At IOL plane.
2Based on an average pseudophakic human eye.
*The A-constant is presented as a starting point for the lens power calculation. When calculating the exact lens power, it is recommended that calculations be performed individually, based on the equipment used and operating surgeon’s own experience.
†These optimized constants for the calculation of intraocular lens power published by IOLCon on their website: https://iolcon.org are calculated from 1,475 clinical results for Vivinex™ Model XY1/XC1 as of Sept. 24, 2021. These constants are based on actual surgical data and are provided by IOLCon as a starting point for individual constant optimizations. The information available on the website is based on data originating from other users and not by HOYA Surgical Optics (“HSO”). HSO therefore does not warrant the correctness, completeness and currentness of the contents on the said website
Information contained is intended for health care professionals. For a full list of indications and contra indications please refer to the Instructions For Use. Some of the products and/or specific features as well as the procedures featured in this document may not be approved in your country and thus may not be available there. Please contact our regional representative regarding individual availability in your country. HOYA and Vivinex are trademarks of the HOYA Corporation or its affiliates. ©2022 HOYA Medical Singapore Pte. Ltd. All rights reserved.
- Schartmüller, D. et al. (2019): True rotational stability of a single-piece hydrophobic intraocular lens. In: The British journal of ophthalmology 103 (2), p. 186–190.
- Clinical Evaluation of the HOYA Vivinex™ IOL, HOYA data on file DoF-PHIV-101-SP2-12mIR-31082018 (2018).
- HOYA data on file. DoF-CTM-21-002, HOYA Medical Singapore Pte. Ltd, 2021.
- Christiansen G, et al. Glistenings in the AcrySof intraocular lens: pilot study. J Cataract Refract Surg. 2001;27(5):728-733.
- Tandogan, T. et al. In-vitro glistening formation in six different foldable hydrophobic intraocular lenses. In BMC Ophthalmol. 2021; 21, 126.
- Pérez-Merino P, Marcos S. Effect of intraocular lens decentration on image quality tested in a custom model eye. J Cataract Refract Surg. 2018;44(7):889-896.
- Leydolt C, et al. Posterior Capsule Opacification With Two Hydrophobic Acrylic Intraocular Lenses: 3-Year Results of a Randomized Trial. Am J Ophthalmol. 2020;217:224-231.
- De Giacinto C, et al. Surface properties of commercially available hydrophobic acrylic intraocular lenses: Comparative study. J Cataract Refract Surg. 2019;45(9):1330-1334.
- Werner L, et al. Evaluation of clarity characteristics in a new hydrophobic acrylic IOL in comparison to commercially available IOLs. J Cataract Refract Surg. 2019;45(10):1490-1497.
- Matsushima H,et al. Active oxygen processing for acrylic intraocular lenses to prevent posterior capsule opacification. J Cataract Refract Surg. 2006;32(6):1035-1040.
- Farukhi MA, et al. Evaluation of uveal and capsule biocompatibility of a single-piece hydrophobic acrylic intraocular lens with ultraviolet-ozone treatment on the posterior surface. J Cataract Refract Surg. 2015;41(5):1081-1087.
- Nanavaty, M. et al. Edge profile of commercially available square-edged intraocular lenses: Part 2. In: Journal of cataract and refractive surgery 45 (6), 2019;p. 847–853.
- Eldred, J. et al. An In Vitro Human Lens Capsular Bag Model Adopting a Graded Culture Regime to Assess Putative Impact of IOLs on PCO Formation. In: Investigative ophthalmology & visual science 60 (1), 2019;p. 113–122.
Our Vivinex™
Toric IOL
Proven benefits for you and your patients:
Outstanding rotational stability with median rotation 1.1° (range:0.0°-5.0°)1
Glistening-free hydrophobic IOL material for enhanced clarity2,3,4,5
Proprietary aspheric design to improve image quality6
Active oxygen processing treatment, a smooth surface, and square optic edge to reduce PCO3,7,8,9,10,11,12,13
*Third-party trademarks used herein are the property of their respective owners.
- Schartmüller D, et al. True rotational stability of a single-piece hydrophobic intraocular lens. Br J Ophthalmol. 2019;103(2):186–190.
- Schartmüller D. Comparison of Long-Term Rotational Stability of Three Commonly Implanted Intraocular Lenses. Am J Ophthalmol. 2020;220:72–81.
Raising the bar
Maximum rotation values observed in the first week following surgery1,2
Reliable outcomes through outstanding rotational stability
Compared with AcrySof®, Tecnis®, and enVista®,* Vivinex™ demonstrated the least amount of rotation in the first week post-surgery.1,2
*Third-party trademarks used herein are the property of their respective owners.
- Schartmüller D, et al. True rotational stability of a single-piece hydrophobic intraocular lens. Br J Ophthalmol. 2019;103(2):186–190.
- Schartmüller D. Comparison of Long-Term Rotational Stability of Three Commonly Implanted Intraocular Lenses. Am J Ophthalmol. 2020;220:72–81.
Setting the standard for rotational stability
Vivinex™ had no rotations more than 5° from the initial axis up to 6 months post-operation1,2 compared with Acrysof®, Tecnis®, and enVista®.*
*Third-party trademarks used herein are the property of their respective owners.
- Miyata A, et al. Clinical and experimental observation of glistening in acrylic intraocular lenses. Jpn J Ophthalmol. 2001;45(6):564-569.
- Tandogan, T. et al. In-vitro glistening formation in six different foldable hydrophobic intraocular lenses. In BMC Ophthalmol. 2021; 21, 126.
- HOYA data on file. DoF-CTM-21-002, HOYA Medical Singapore Pte. Ltd, 2021.
Glistening-free clarity
In vitro glistening formation at 14x magnification2
Vivinex™ is rated glistening-free with 97.0% of lenses demonstrating <10 glistenings per 10mm x 2mm field and showing significantly less glistenings than AcrySof IQ SN60WF* (p<0.0001).3
- Pérez-Merino P, Marcos S. Effect of intraocular lens decentration on image quality tested in a custom model eye. J Cataract Refract Surg. 2018;44(7):889-896.
- De Giacinto C, et al. Surface properties of commercially available hydrophobic acrylic intraocular lenses: Comparative study. J Cataract Refract Surg. 2019;45(9):1330-1334.
- Werner L, et al. Evaluation of clarity characteristics in a new hydrophobic acrylic IOL in comparison to commercially available IOLs. J Cataract Refract Surg. 2019;45(10):1490-1497.
- HOYA data on file. DoF-CTM-21-002, HOYA Medical Singapore Pte. Ltd, 2021.
- Leydolt C, et al. Posterior Capsule Opacification With Two Hydrophobic Acrylic Intraocular Lenses: 3-Year Results of a Randomized Trial. Am J Ophthalmol. 2020;217:224-231.
- Eldred JA, et al. An In Vitro Human Lens Capsular Bag Model Adopting a Graded Culture Regime to Assess Putative Impact of IOLs on PCO Formation. Invest Ophthalmol Vis Sci. 2019;60(1):113-122.
- Nanavaty MA, et al. Edge profile of commercially available square-edged intraocular lenses: Part 2. J Cataract Refract Surg. 2019;45(6):847-853.
What features of an IOL limit PCO?
Vivinex™ is made from a novel hydrophobic acrylic, using a proprietary manufacturing process that includes a unique, active oxygen posterior surface treatment
Combined with its square edge design and smooth, regular IOL surface, it has been demonstrated to provide a low incidence of PCO in several studies.1-6
- Matsushima, H. et al. (2006): Active oxygen processing for acrylic intraocular lenses to prevent posterior capsule opacification. In: Journal of cataract and refractive surgery 32 (6), p. 1035–1040.
- HOYA data on file. DoF-CTM-21-002, HOYA Medical Singapore Pte. Ltd, 2021.
- Leydolt C, et al. Posterior Capsule Opacification With Two Hydrophobic Acrylic Intraocular Lenses: 3-Year Results of a Randomized Trial. Am J Ophthalmol. 2020;217:224-231.
- De Giacinto C, et al. Surface properties of commercially available hydrophobic acrylic intraocular lenses: Comparative study. J Cataract Refract Surg. 2019;45(9):1330-1334.
- Werner L, et al. Evaluation of clarity characteristics in a new hydrophobic acrylic IOL in comparison to commercially available IOLs. J Cataract Refract Surg. 2019;45(10):1490-1497.
- Matsushima H,et al. Active oxygen processing for acrylic intraocular lenses to prevent posterior capsule opacification. J Cataract Refract Surg. 2006;32(6):1035-1040.
- Farukhi MA, et al. Evaluation of uveal and capsule biocompatibility of a single-piece hydrophobic acrylic intraocular lens with ultraviolet-ozone treatment on the posterior surface. J Cataract Refract Surg. 2015;41(5):1081-1087.
- Eldred JA, et al. An In Vitro Human Lens Capsular Bag Model Adopting a Graded Culture Regime to Assess Putative Impact of IOLs on PCO Formation. Invest Ophthalmol Vis Sci. 2019;60(1):113-122.
- Nanavaty MA, et al . Edge profile of commercially available square-edged intraocular lenses: Part 2. J Cataract Refract Surg. 2019;45(6):847-853.
Are you interested in clinical proof?
Vivinex™ XY1 (HOYA) | AcrySof® IQ SN60WF (Alcon) | ||||
---|---|---|---|---|---|
Objective (EPCO score) |
0.12 ± 0.19 | n = 57 | p < .026 | 0.24 ± 0.46 | n = 57 |
Subjective (slit lamp score) |
0.30 ± 0.55 | n = 67 | p = .044 | 0.48 ± 0.84 | n = 67 |
Nd:YAG rate | 0.0% | n = 67 | p = 1.00 | 1.5 % | n = 67 |
Objective (AQUA score) |
0.9 ± 0.8 | n = 64 | P < .001 | 1.4 ± 1.1 | n = 62 |
Subjective (slit lamp score) |
1.4 ± 1.4 | n = 64 | P = .001 | 2.3 ± 2.0 | n = 62 |
Nd:YAG rate | 11.4% | n = 70 | p = .23 | 18.6 % | n = 70 |
In a randomized multi-center trial, Vivinex™ demonstrated significantly lower objective and subjective PCO scores compared with AcrySof® IQ after 3 years.1
In a randomized single-center trial, Vivinex™ demonstrated significantly lower objective and subjective PCO scores compared with AcrySof® IQ after 3 years.2
These results confirm low occurrence of PCO in both IOL groups and significantly lower PCO incidence with Vivinex™ compared to AcrySof® IQ.
These results confirm low occurrence of PCO in both IOL groups and significantly lower PCO incidence with Vivinex™ compared to AcrySof® IQ.
Vivinex™ is made from a novel hydrophobic acrylic, using a proprietary manufacturing process that includes a unique, active oxygen posterior surface treatment. Combined with its square edge design and smooth, regular IOL surface, it has been demonstrated to provide a low incidence of PCO in several studies.1-8
Scroll